Publications

2024

【1】Chen, X., Zhong, M., Sun, M., An, D., Feng, W., & Yang, M. (2024). Recovering Bathymetry Using BP Neural Network Combined with Modified Gravity–Geologic Method: A Case Study in the South China Sea. Remote Sensing, 16(21), 4023. https://doi.org/10.3390/rs16214023

【2】An, D., Feng, W., Chen, X., Sun, M., Zhang, Z., Yang, M., & Zhong, M. (2024). Predicting intermediate wavelength depth using a deep neural network combined with gravity data in the Sea of Japan. International Journal of Digital Earth, 17(1). https://doi.org/10.1080/17538947.2024.2430679

【3】Sun, M., Feng, W., Yu, D., Chen, X., Liang, W., & Zhong, M. (2024). Analysing the impact of SWOT observation errors on marine gravity recovery. Geophysical Journal International, 237(2), 862-871.

【4】Xiong, Y., Feng, W., Zhou, X., Kusche, J., Shen, Y., Yang, M., Wang, C., & Zhong, M. (2024). Separation of earthquake and hydrology signals from GRACE satellites data via independent component analysis: a case study in the Sumatra region. Geophysical Journal International, 239(3), 1597-1616.

【5】孙明智,  冯伟  ,  安德超  ,  陈晓东 ,  张泽远,  杨萌 ,  钟敏 , 基于多源数据和卷积神经网络的海洋重力场反演研究,地球物理学报,DOI:10.6038/cjg2024S0197【2024-08-03录用未见刊】

【6】Wang L., Yang M., Huang Z., Feng W., Yan X., & Zhong M. (2024). Impacts of Digital Elevation Model Elevation Error on Terrain Gravity Field Calculations: A Case Study in the Wudalianchi Airborne Gravity Gradiometer Test Site, China. Remote Sensing, 16(21): 3948.

【7】He, J., S. Zhang*, X. Cui, and W. Feng* (2024), Remote sensing for shallow bathymetry: A systematic review, Earth-Science Reviews, 258, 104957, doi:https://doi.org/10.1016/j.earscirev.2024.104957.

【8】An, D., Feng, W*., Chen, X., Sun, M., Zhang, Z., Yang, M., & Zhong, M. (2024). Predicting intermediate wavelength depth using a deep neural network combined with gravity data in the Sea of Japan. International Journal of Digital Earth, 17(1). https://doi.org/10.1080/17538947.2024.2430679

【9】Xiong, Y., W. Feng*, X. Zhou, J. Kusche, Y. Shen, M. Yang, C. Wang, and M. Zhong (2024), Separation of Earthquake and Hydrology Signals from GRACE Satellites Data via Independent Component Analysis: A Case Study in the Sumatra Region, Geophysical Journal International, doi:10.1093/gji/ggae351.

【10】Shen, Y., Feng, W.*, Yang, M., Zhong, M., Tian, W., Xiong, Y., Jiang, Z. A New Combination Approach for Gibbs Phenomenon Suppression in Regional Validation of Global Gravity Field Model: A Case Study in North China. Remote Sensing 202416, 2756. https://doi.org/10.3390/rs16152756

【11】安树伟,冯伟*,穆庆禄,杨萌,王长青,钟敏,基于我国光纤骨干网络的相对论重力测量模拟研究,地球物理学报, 2024, 68(2): 431-443, doi: 10.6038/cjg2024R0736

【12】郭丁昊,王长青,朱紫彤,熊宇昊,杨萌,钟敏,沈云中,陈秋杰,冯伟*,多卫星星座对时变重力场反演精度和时空分辨率影响的模拟研究,地球物理学报, 2024, 67(6): 2125-2140, doi: 10.6038/cjg2023R0422

【13】Sun, M., W. Feng*, D. Yu, X. Chen, W. Liang, and M. Zhong (2024), Analysing the impact of SWOT observation errors on marine gravity recovery, Geophysical Journal International, 237(2), 862-871, doi:10.1093/gji/ggae073.

【14】何金宸,张书航,冯伟*,燕兴元,晋泽辉,林家元.基于无人机影像与机器学习的钙华湖泊水深反演,遥感学报,2024: 1-10

【15】梁炜轩,冯伟*,孙明智,钟敏,基于SWOT卫星模拟数据的湖泊水储量观测能力分析:以青藏高原典型湖泊为例,遥感学报,2024,10.11834/jrs.20243435    

【16】He, J., Zhang, S., Feng, W.*, Lin, J., 2024. Quantifying earthquake-induced bathymetric changes in a tufa lake using high-resolution remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 127, 103680. https://doi.org/10.1016/j.jag.2024.103680

【17】Jiang Z. (*), Zhu J., Guo H., Qiu K., Tang M., Yang X., Liu J., 2024. South-to-North Water Diversion Halting Long-Lived Subsidence in Tianjin, North China Plain, Remote Sensing 16, 3213. doi: 10.3390/rs16173213

【18】Jiang Z., Tang M., Yang X., Wen H., Yuan L., Shen Y., Feng W., Zhong M., 2024. Characterizing multifarious hydroclimatic patterns using geodetic measurements in the Australian mainland, Journal of Hydrology 642, 131792. doi: 10.1016/j.jhydrol.2024.131792

【19】Li W, Yang M*, Feng W, et al. Improved Approaches for 3D Gravity and Gradient Imaging Based on Potential Field Separation: Application to the Magma Chamber in Wudalianchi Volcanic Field, Northeastern China[J]. Remote Sensing, 2024, 16(7): 1187.

【20】Wang L, Yang M*, Huang Z, et al. Impacts of Digital Elevation Model Elevation Error on Terrain Gravity Field Calculations: A Case Study in the Wudalianchi Airborne Gravity Gradiometer Test Site, China[J]. Remote Sensing, 2024, 16(21): 3948.

【21】Zhang B, Yang M*, Feng W, et al. RTM Gravity Forward Modeling Using Improved Fully Connected Deep Neural Networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-11.

【22】Zhu K, Yang M*, Yan X, et al. GRAIL gravity gradients evidence for a potential lava tube at Marius Hills on the moon[J]. Icarus, 2024, 408: 115814.

【23】Yan X , Liu C , Yang M ,et al. Remote marine precise point positioning with baseline length and troposphere-constrained models of the receivers for the oceanographic research vessel[J].Geo-spatial information science, 2024.

【24】Yan X , Liu C , Yang M ,et al. An un-differenced epoch-piecewise parallel estimation of the GNSS satellite clock offsets[J].Measurement, 2024, 227(000):12.DOI:10.1016/j.measurement.2024.114217.

【25】Wang H, Yan X, Yang M, et al. A Method for Constructing an Empirical Model of Short-Term Offshore Ocean Tide Loading Displacement Based on PPP[J]. Remote Sensing,2024,16

【26】彭凌智,燕兴元*,杨萌,等. 远海环境低成本RTK接收机多路径效应与平滑伪距单点定位性能 [J]. 大地测量与地球动力学, 2024, 44 (07): 674-679. DOI:10.14075/j.jgg.2023.11.197.

2023

【1】 Li, W. K., Mu, Q. L., Yang, M., Feng, W., & Zhong, M. (2023). Iterative approaches for regional Moho determination using on-orbit gravity gradients: a case study in Qinghai–Tibet Plateau and its near zone. Geophysical Journal International, 235(1), 765-777.

【2】冉将军, 闫政文, 吴云龙, 钟敏, 肖云, 楼立志, 王长青. 下一代重力卫星任务研究概述与未来展望[J]. 武汉大学学报 ( 信息科学版), 2023, 48(6): 841-857. DOI: 10.13203/j.whugis20220629

3Feng W, Xiong Y, Yi Shuang, Zhong B., Chen X, Zhong Y, Pan Y, Liu L, Wang W, Zhong M. Recent Progress on Hydrogeodesy in China[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 124-134.

【4】Zhong, Y., B. Tian, B. D. Vishwakarma, W. Feng*, Y. Wu*, H. Bai, and M. Zhong (2023), Reinterpreting Global GRACE Trends Based on Century-Long GRACE-REC Data, Water Resource. Research, 59(12), e2023WR035817, doi:https://doi.org/10.1029/2023WR035817.

【5】Yang, M., W.-K. Li, W. Feng*, R. Pail, Y.-G. Wu, and M. Zhong (2023), Integration of Residual Terrain Modelling and the Equivalent Source Layer Method in Gravity Field Synthesis for Airborne Gravity Gradiometer Test Site Determination, Remote Sensing, 15(21), 5190.

【6】Jiang Z., Zhang Y., Chang M., Tang M., Yang X., Yuan Y., 2025. Weighted Laplacian Smoothing Constraints for Terrestrial Water Storage Changes Considering GNSS Station Density: A Case Study in Pacific Northwest, GPS Solutions, 29: 104. doi: 10.1007/s10291-025-01863-3

【7】    Jiang Z., Zhang H., Tang M., Yang X., Yuan L., Yuan Y., Feng W., Zhong M., 2025. Tracking California’s striking water storage gains attributed to intensive atmospheric rivers, Journal of Hydrology, 653: 132804. doi: 10.1016/j.jhydrol.2025.132804

【8】Jiang, Z. (*), Tang, M., Wen, H., Yuan, L., Chang, M. (2025). GNSS2TWS_Slepian: A software to recover GNSS-inverted terrestrial water storage changes based on Slepian basis functions. Earth Science Informatics, 18(1), 1-14. doi: 10.1007/s12145-024-01559-1

【9】Jiang Z. (*), Hsu Y., Yuan L., Wei F., Yang X., Tang M., 2022. GNSS2TWS: an open-source MATLAB-based tool for inferring daily terrestrial water storage changes using GNSS vertical data, GPS Solutions, 26, 114. doi: 10.1007/s10291-022-01301-8

【10】Li W K, Mu Q L, Yang M*, et al. Iterative approaches for regional Moho determination using on-orbit gravity gradients: a case study in Qinghai–Tibet Plateau and its near zone[J]. Geophysical Journal International, 2023, 235(1): 765-777.

【11】Lin M, Yang M*, Zhu J. Experiences with the RTM Method in Local Quasi-Geoid Modeling[J]. Remote Sensing, 2023, 15(14): 3594.

【12】Yang M, Li W K, Feng W*, et al. Integration of Residual Terrain Modelling and the Equivalent Source Layer Method in Gravity Field Synthesis for Airborne Gravity Gradiometer Test Site Determination[J]. Remote Sensing, 2023a, 15(21): 5190.

【13】Yang M, Li X, Lin M, et al. On the harmonic correction in the gravity field determination[J]. Journal of Geodesy, 2023b, 97(11): 106.

【14】Yan X , Liu C , Jiang M ,et al. Performance analysis of oceanographic research vessel precise point positioning based on BDS/GNSS RTK receivers[J].Measurement, 2023:211.DOI:10.1016/j.measurement.2023.112637.

【15】Yan X , Liu C , Yang M ,et al. An Improved Parameter Estimation Method for High-Efficiency Multi-GNSS-Integrated Orbit Determination[J]. Remote Sensing, 2023, 2635.

2022

1.    Yang M, Hirt C, Wu B, et al. Residual Terrain Modelling: The Harmonic Correction for Geoid Heights[J]. Surveys in Geophysics, 2022,43(4):1201-1231.
2.    Deng X, Shen W, Yang M, et al. First-Order Derivatives of Principal and Main Invariants of Magnetic Gradient Tensor of a Uniformly Magnetized Tesseroid and Spherical Shell[J]. Surveys in Geophysics, 2022,43(4):1233-1262.
3.    Jiang Z, Hsu Y, Yuan L, et al. Hydrological drought characterization based on GNSS imaging of vertical crustal deformation across the contiguous United States[J]. Science of The Total Environment, 2022,823:153663.
4.    Jiang Z, Hsu Y, Yuan L, et al. Insights into hydrological drought characteristics using GNSS-inferred large-scale terrestrial water storage deficits[J]. Earth and Planetary Science Letters, 2022,578:117294.


2021

1.    Yang Y, Zhong M, Feng W, et al. Detecting Regional Deep Ocean Warming below 2000 meter Based on Altimetry, GRACE, Argo, and CTD Data[J]. Advances in Atmospheric Sciences, 2021,38(10).
2.    Ran Y, Zhong M, Chen W, et al. Monitoring the extreme drought in the middle and lower reaches of the Yangtze River in 2019 from GRACE-FO satellites[J]. Chinese Science Bulletin, 2021,66:107-117.
3.    Deng X, Shen W, Yang M, et al. First-order derivatives of principal and main invariants of gravity gradient tensor of the tesseroid and spherical shell[J]. Journal of Geodesy, 2021,95(9):102.
4.    Jiang Z, Hsu Y, Yuan L, et al. Monitoring time-varying terrestrial water storage changes using daily GNSS measurements in Yunnan, southwest China[J]. Remote Sensing of Environment, 2021,254:112249.
5.    Jiang Z, Hsu Y, Yuan L, et al. Estimation of daily hydrological mass changes using continuous GNSS measurements in mainland China[J]. Journal of Hydrology, 2021,598:126349.
6.    Jiang Z, Hsu Y J, Yuan L, et al. Characterizing spatiotemporal patterns of terrestrial water storage variations using GNSS vertical data in Sichuan, China[J]. Journal of Geophysical Research: Solid Earth, 2021,126(12):e2021J-e22398J.
 


2020

1.    Jiang M. Sentinel-1 TOPS co-registration over low-coherence areas and its application to velocity estimation using the all pairs shortest path algorithm[J]. Journal of Geodesy, 2020,94(10):95.
2.    Jiang M, Hooper A, Tian X, et al. Delineation of built-up land change from SAR stack by analysing the coefficient of variation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020,169:93-108.
3.    Jiang M, Guarnieri A M. Distributed scatterer interferometry with the refinement of spatiotemporal coherence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020,58(6):3977-3987.
4.    张勤, 燕兴元, 黄观文, 等. 北斗卫星天线相位中心改正模型精化及对精密定轨和定位影响分析[J]. 测绘学报, 2020,49(9):1101-1111.
5.    Shen Y, Yan H, Peng P, et al. Boundary-included enhanced water storage changes inferred by GPS in the pacific rim of the Western United States[J]. Remote Sensing, 2020,12(15):2429.
6.    Bai X, Yan H, Zhu Y, et al. Formal error assessment of geodetic mean dynamic topography at different spatial scales[J]. Journal of Geodynamics, 2020,138:101753.
7.    Yang M, Hirt C, Pail R. TGF: A New MATLAB-based Software for Terrain-related Gravity Field Calculations[J]. Remote Sensing, 2020,12(7):1063.
 


2019

1.    Zhong Y, Feng W, Humphrey V, et al. Human-induced and climate-driven contributions to water storage variations in the Haihe River Basin, China[J]. Remote Sensing, 2019,11(24):3050.
2.    Feng W. GRAMAT: A comprehensive Matlab toolbox for estimating global mass variations from GRACE satellite data[J]. Earth Science Informatics, 2019,12(3):389-404.
3.    Yang M, Hirt C, Rexer M, et al. The tree-canopy effect in gravity forward modelling[J]. Geophysical Journal International, 2019,219(1):271-289.
4.    Hirt C, Bucha B, Yang M, et al. A numerical study of residual terrain modelling (RTM) techniques and the harmonic correction using ultra-high-degree spectral gravity modelling[J]. Journal of Geodesy, 2019,93:1469-1486.
5.    Hirt C, Yang M, Kuhn M, et al. SRTM2gravity: An Ultrahigh Resolution Global Model of Gravimetric Terrain Corrections[J]. Geophysical Research Letters, 2019,46(9):4618-4627.
6.    Bucha B, Hirt C, Yang M, et al. Residual terrain modelling (RTM) in terms of the cap-modified spectral technique: RTM from a new perspective[J]. Journal of Geodesy, 2019,93:2089-2108.
7.    Yan X, Liu C, Huang G, et al. A priori solar radiation pressure model for BeiDou-3 MEO satellites[J]. Remote Sensing, 2019,11(13):1605.
8.    Yan X, Huang G, Zhang Q, et al. Estimation of the antenna phase center correction model for the BeiDou-3 MEO satellites[J]. Remote Sensing, 2019,11(23):2850.
9.    Yan X, Huang G, Zhang Q, et al. Early analysis of precise orbit and clock offset determination for the satellites of the global BeiDou-3 system[J]. Advances in space research, 2019,63(3):1270-1279.
 


2018

1.    Feng W, Shum C K, Zhong M, et al. Groundwater storage changes in China from satellite gravity: An overview[J]. Remote Sensing, 2018,10(5):674.
2.    Zhong Y, Zhong M, Feng W, et al. Groundwater depletion in the West Liaohe River Basin, China and its implications revealed by GRACE and in situ measurements[J]. Remote Sensing, 2018,10(4):493.
3.    Jiang Z, Yuan L, Huang D, et al. Spatial-temporal evolution of slow slip movements triggered by the 2016 Mw 7.8 Kaikoura earthquake, New Zealand[J]. Tectonophysics, 2018,744:72-81.
4.    Jiang Z, Yuan L, Huang D, et al. Postseismic deformation associated with the 2015 Mw 7.8 Gorkha earthquake, Nepal: Investigating ongoing afterslip and constraining crustal rheology[J]. Journal of Asian Earth Sciences, 2018,156:1-10.
5.    Jiang Z, Huang D, Yuan L, et al. Coseismic and postseismic deformation associated with the 2016 Mw 7.8 Kaikoura earthquake, New Zealand: fault movement investigation and seismic hazard analysis[J]. Earth, Planets and Space, 2018,70:1-14.
6.    Yang M, Hirt C, Tenzer R, et al. Experiences with the use of mass-density maps in residual gravity forward modelling[J]. Studia Geophysica et Geodaetica, 2018,62:596-623.
7.    燕兴元, 王乐, 黄观文, 等. BeiDou-3试验卫星精密定轨及钟差精度分析[J]. 测绘科学技术学报, 2018,35(1):27-31.
 


2017
1.    冯伟, 王长青, 穆大鹏, 等. 基于GRACE的空间约束方法监测华北平原地下水储量变化[J]. 地球物理学报, 2017,60(5):1630-1642.
2.    Jiang M, Miao Z, Gamba P, et al. Application of multitemporal InSAR covariance and information fusion to robust road extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(6):3611-3622.
3.    Jiang M, Yong B, Tian X, et al. The potential of more accurate InSAR covariance matrix estimation for land cover mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,126:120-128.
4.    Jiang Z, Yuan L, Huang D, et al. Postseismic deformation associated with the 2008 Mw 7.9 Wenchuan earthquake, China: Constraining fault geometry and investigating a detailed spatial distribution of afterslip[J]. Journal of Geodynamics, 2017,112:12-21.
5.    王乐, 燕兴元, 张勤, 等. 低轨卫星增强BDS卫星定轨技术探讨[J]. 导航定位学报, 2017,5(4):51-57.
6.    Wu D, Yan H, Shen Y. TSAnalyzer, a GNSS time series analysis software[J]. GPS Solutions, 2017,21:1389-1394.